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Abstract. State-of-the-art computational approaches to
magnetic coupling in biradicals, dinuclear complexes
and wide-gap insulators are reviewed with the aim to
provide a unified point of view. The most rigorous wave-
function-based methods provide an accurate description
of magnetic coupling in all these systems, whereas
density-functional-based methods within the broken
symmetry approach provide an alternative, yet efficient,
computational tool. The use of mapping procedures
permits the broken symmetry solution to be related to
the appropriate spin state. Different arguments are given
to show that the neglect of this procedure may lead to
values in agreement with experiment, but at the cost of
serious contradictions.
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1 Introduction

Paramagnetic centres appear rather commonly in many
molecules and solids and the magnetic interaction
between these centres gives rise to very interesting
physical phenomena. This magnetic interaction is usu-
ally referred to as magnetic coupling and is of great
interest in biradicals [1], dinuclear complexes [2] and
ionic solids, in particular, high-temperature supercon-
ductor parent compounds [3]. In all these systems,
magnetic coupling is usually rationalised in terms of
model spin Hamiltonians, the best known and most
widely used is the Heisenberg—Dirac—van Vleck (HDVYV)
Hamiltonian [4, 5], which for two magnetic centres with
total net spin S; and S, respectively, is simply given by

AW = —J.8.8; (1)
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where J;; is the magnetic coupling constant governing the
energy difference between the different spin states and S;
and S; are the total spin operators for centres “i”” and .
The choice of the sign in Eq. (1) is such that J;; is positive
for a ferromagnetic interaction favouring parallel spins.
For an extended solid one must consider that all
magnetic centres interact and, hence, it is necessary to
consider all possible interactions. However, the magni-
tude of the magnetic coupling constant decreases expo-
nentially with distance and in many cases it is enough to
consider interactions between nearest-neighbour spins
only. In this latter case the HDVV may be written as

FHDVY _ Zt]ijSiSj (2)
(i)

where the symbol (i, j) indicates summation over all i
and j neighbouring magnetic centres and J;; is again the
Heisenberg coupling constant between 7 and 57
magnetic centres.

Assuming that the magnetic interaction is effectively
given by the HDVV Hamiltonian it is possible to extract
the magnetic coupling constant from different experi-
ments, such as susceptibility measurements, neutron
diffraction or Raman scattering [6]. The experimental
values for the magnitude of the magnetic coupling con-
stant cover a broad range, from a few Kelvin in some
biradicals and dinuclear complexes [1, 2] to about
1500 K in high-temperature superconductor parent
compounds [3]. Attempts to estimate the magnetic cou-
pling constant in all these materials go back to the early
days of quantum chemistry. The magnetic coupling in
Mn dimer complexes was studied by Nesbet in the early
1960s [7-10]. One of the first applications of the wave-
function-based methods of quantum chemistry to the
problem of magnetic coupling of an extended system,
such as KNiF3, was reported by Wachters and Nieuw-
poort in 1972 [11]. These pioneering works used a cluster
model for the extended solid together with very
approximate wave functions and, although they were
unable to reach a quantitative description of magnetic
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coupling, they achieved a remarkable qualitative
understanding of such a complex problem.

A more accurate description of magnetic coupling has
been possible thanks to recent developments in methods
based on configuration interaction (CI) [12-14] and
density functional theory (DFT) [15-18]. In the case of
CI wave functions the magnetic coupling constant is
obtained from energy differences corresponding to pure
spin states [19-21] and the only problem is the accurate
determination of the proper energies. However, in the
case of DFT-based methods one faces additional prob-
lems due to the fact that almost all practical imple-
mentations of DFT are based on the Kohn—Sham [15]
procedure and, hence, on the use of a single Slater
determinant to express the electronic density.

The goal of this article is to critically discuss the
different procedures that one may find in the literature
and to provide a unified point of view of the quantum
chemical approach to magnetic coupling in systems that
at first sight belong to different research fields. These
systems include biradicals, dinuclear complexes and
wide-gap insulators. In particular, it will be shown that
the use of mapping between the eigenvalues and eigen-
functions of exact and model spin Hamiltonians permits
DFT to be used in a way which is fully consistent with
the standard wave-function-based quantum chemical
approach, whereas significant contradictions may
appear when this mapping is not respected.

2 Exact and spin model Hamiltonians,
spin eigenfunctions and the mapping strategy

The HDVV model Hamiltonian acts in spin space only
and, hence, assumes that the spatial part of the wave
functions involved in magnetic coupling is the same for
all neutral spin configurations. For two interacting spin
moments, i.e. biradicals or dinuclear complexes, the
eigenstates of the HDVV can be easily found. Let us
first consider the case of two particles with total spin
Y2 as two hydrogen atoms at a large distance or two
effective d° Cu®" cations in a dinuclear complex or in a
cuprate superconductor parent compound. In this case
the spin space has a dimension of 4 and a basis for this
space is simply given by [oo), |BB). [of) and |Bo). Since
the HDVYV, the total square spin operator, S-, and the
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z-component of the total spin operator, S., commute
with each other it is possible to find a set of
eigenfunctions common to_the three operators. The
cigenfunctions of $2 and §. are denoted |S,M,) and
it is straightforward to show that |1,1) = |ax) and
[1,—1) = |Bp), whereas |off) and |f«), must be com-
bined to yield |0,0) and |1,0). Therefore, the four spin
states are grouped in a singlet, |S) = |0, 0) and a triplet,
|T), with its three S, components. It is a simple exercise
to demonstrate that the singlet and triplet states are also
eigenfunctions of the HDVV Hamiltonian with energies
%J and —YJ, respectively [22, 23]. Therefore, the
magnetic coupling constant is simply given by the
energy difference between the singlet and the triplet
states. In an ab initio, wave-function-based calculation
one commonly applies the exact nonrelativistic Hamil-
tonian and the two localised spin moments arise from
two unpaired electrons in two open shell, or magnetic,
orbitals. These two unpaired electrons give rise to a
singlet and a triplet state and one can establish a one-to-
one correspondence between the ab initio wave func-
tions for the singlet and the triplet and the spin
eigenfunctions for the HDVV Hamiltonian. This one-
to-one correspondence permits J to be computed from a
singlet—triplet energy difference (Fig. 1).

Unfortunately, not all cases are that simple, but the
mapping procedure outlined provides a useful guide to
the problem of computing magnetic coupling constants.
For a somewhat more complicated case, such as two
partlcles with total spin 1, e.g. two effective & Ni*"
cations in a dinuclear complex or in a perovskite-like
KNiF3;, the dimension of the spin space is 9 and the
resulting spin states are the five components (|22), |21),
|20}, |2, —1) and |2, —2)) of a quintet, |Q), state, the three
components of a triplet, |T), and a singlet, |S), similar to
those described previously. These spin eigenfunctions
are also eigenfunctions of the HDVV Hamiltonian with
values —J, J, and 2J, respectively [19-21]. The ab initio
calculation of such a system involves four open shell
orbitals and, again, one can make use of the one-to-one
correspondence between the exact and HDVV Hamil-
tonians to extract J from the appropriate energy differ-
ences (Fig. 2). Moreover, this particular case permits the
investigation of whether the system under consideration
behaves according to the HDVV Hamiltonian because
one can extract J from three different mappings.
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Fig. 2. Energy diagram for the
eigenstates of the exact, HDVV
and Ising model Hamiltonians
for a system of two S = 1
interacting spins. States in
parentheses indicate that these
particular eigenstates of the
HDVYV Hamiltonian are not
eigenfunctions of the Ising
Hamiltonian, the energy in
these cases is just an expectation
value
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In the case of many magnetic centres it is not always
possible to find the eigenfunctions of the HDVV Ham-
iltonian [22]. This is also the case for periodic systems,
where exact solution for HDVV exists for one-dimen-
sional systems only. A common approach to the com-
putation of the magnetic coupling constant for periodic
systems is to make use of a simplified version of the
HDVV Hamiltonian in which the total spin operators
are substituted by the z-component of this operator,

. .
R A

3)

The resulting model Hamiltonian is referred to as the
Ising model Hamiltonian and has exact solutions for
one- and two-dimensional cases only [22] although one
can extract J from energy differences between appropri-
ate states [24] by assuming that all interactions are
additive. However, these states are not always eigen-
functions of S? and special care is needed when using this
approach. The Ising Hamiltonian still commutes with S,
so it is possible to use M, as a quantum number. There
are two special eigenstates of this spin Hamiltonian,
namely, the one that corresponds to the case of
maximum M, the so-called ferromagnetic state, and
the case of minimum M, the antiferromagnetic or Néel
state. For an even number of electrons the antiferro-
magnetic state has M, = 0. The ferromagnetic state,
|[F), is always a spin eigenfunction but the single
determinantal nature of the antiferromagnetic, state
|AF), prevents this state from being an eigenfunction of
the square of the total spin operator, S%. For, an infinite
system |AF) cannot be a pure spin state, whereas for
dimers one has different situations. In general, the |F)
and |AF) states are not the only eigenfunctions of the
Ising Hamiltonian.

In order to establish comparisons it is interesting to
investigate the behaviour of the pure spin eigenfunctions
with respect to the Ising Hamiltonian. For the case of
two particles with spin % it is easy to show that the |1, 1)
and |1, —1) spin states are also eigenstates of the Ising
Hamiltonian with eigenvalue — "4/ as in the Heisenberg
Hamiltonian. Both, |1,1) and |1, —1) are representations
of the |F) state and are degenerate with respect to the
energy (within the Ising Hamiltonian). Likewise, both
|0,0) and |1,0) are eigenfunctions of the Ising model
with energy + %J. This result follows from the fact that

|op) and |Bo) are the eigenfunctions of this model
Hamiltonian with M, = 0 and since they are degenerate
with respect to the Ising Hamiltonian with the + YaJ
eigenvalue, they can be combined to give |0,0) and |1, 0)
while being eigenfunctions of both operators. From this
discussion it is clear that one may take the energy dif-
ference between |1,1) (or |ao) = |F)) and |aff) = |AF)
and obtain J/2 in a straightforward way (Fig. 1). This is
precisely the basis of the broken symmetry (BS)
approach discussed later and the strategy used in peri-
odic Hartree—Fock calculations with the only difference
being that one must take into account the total number
of interactions of a given centre [24].

Let us close this section by discussing the energy
expectation values for the Ising Hamiltonian of the pure
spin states that arise for the case of two particles with
total spin 1. This example will be of crucial importance in
the forthcoming discussion about the DFT approach to
magnetic coupling. Notice that, in this case, M is the
only good quantum number. Seven of the nine spin states
are also eigenstates of the Ising Hamiltonian. These are
the two different |[FM) states (|2,2) and |2,—2)) with
energy —J, the |2,—1), |2,1), |1, 1) and |1, —1) states with
energy equal to zero and the |1,0) state with energy +J.
Moreover, this last state is degenerate with the proper
|AFM) state and, hence, the energy of the |1, 0) state with
respect to the HDVV Hamiltonian is equal to that of the
|AFM) state for the Ising Hamiltonian. This is in con-
trast with the case of two spin Y% particles where the
expectation value of the HDVV and Ising Hamiltonians
for the combinations of the two representations of the
|AFM) state do not coincide (Fig. 1). The remaining two
spin states (|2,0) and |0, 0)) are not eigenfunctions of the
Ising Hamiltonian because they correspond to combi-
nations which are not degenerate with respect to this
Hamiltonian. For these two states the energy expectation
values are J/3 and 2J/3, respectively (Fig. 2). The inter-
esting point from this algebraic analysis is that for the
case of two interacting spin ' particles, there is no way
to combine the two representations of the [AFM) state
that give equal energies within the HDVV and Ising
Hamiltonians, whereas for the case of two spin 1 parti-
cles the two representations of the |AFM) state can be
combined in a spin state of triplet multiplicity (in the case
of using a spin polarized formalism the |AFM) state will
be almost a pure spin state, cf. Sect. 4) which is eigenstate
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of both, HDVV and Ising, Hamiltonians, with the same
energy and the same expectation value for S%. Later
we will show that these two results lead to important
conclusions regarding the use of the broken symmetry
approach to magnetic coupling.

3 The wave function approach

The mapping between the eigenstates of the exact and
HDVV Hamiltonians permits magnetic coupling con-
stants to be obtained for the wave-function-based
approach by simply computing the energies of the
appropriate spin state or, more precisely, the energy
differences between these states. However, the often small
values of the magnetic coupling constants and the very
complex physical mechanisms governing their magnitude
make this calculation rather difficult. In fact, the simplest
ab initio wave function that may deal with pure spin
eigenfunctions is the one derived from the restricted open
shell Hartree—-Fock (ROHF) method. For the case of two
unpaired electrons in two orthogonal, symmetry-adapt-
ed, molecular orbitals, ¢; and ¢;, it is straightforward to
show that the triplet-singlet difference is just 2(;¢,/¢,¢;)
or twice the exchange integral involving the open shell
orbitals. Since this is a two-electron repulsion integral,
and hence is positive, one finds that the triplet state is
always favoured, i.e. the well-known Hund rule. The only
physical mechanism included in the ROHF wave func-
tion is the direct exchange and, accordingly, it is unable
to predict antiferromagnetism. This result led Anderson
[25, 26] to propose the well-known superexchange
mechanism, which essentially adds to the ROHF wave
function the configurations in which the two electrons
occupy either ¢; or ¢; In the language of modern
quantum chemistry this is just a complete-active-space CI
(CASCI) wave function with two active electrons in two
active orbitals. Since the CASCI wave function is
invariant with respect to rotations of the active orbitals
one can localise ¢; and ¢; and recover the picture of
localised magnetic orbitals. In the localised picture the
Anderson model may be viewed simply as a valence bond
wave function constructed from orthogonal atomic
orbitals and including the situations where there is one
magnetic electron per centre, neutral forms, and those
where the two magnetic electrons are located at the same
centre, ionic forms. Once one realises that the Anderson
model is equivalent to that included in a CASCI wave
function, the generalisation to many unpaired electrons
per centre is straightforward. The next point concerns the
performance of the CASCI wave function in predicting
values of J. In general terms, the Anderson model
qualitatively predicts the sign of J and is able to
distinguish between ferro- and antiferromagnetic sys-
tems; however, the predicted value of J is usually too
small, about 30% of the experimental value. Without
pretending to give an exhaustive list of all publications
using a CAS approach to calculate J some representative
examples may be found in Refs. [19-21, 27-32].

The failure of the Anderson model to quantitatively
predict the magnitude of the magnetic coupling constant
in systems with localised spins, i.e. biradicals, binuclear

complexes or wide-gap insulators, is due to the lack of
dynamical correlation effects. To include these impor-
tant effects it is necessary to use a wave function that
goes beyond the CASCI wave function. In principle, one
can choose any explicit correlated wave function, such as
multireference CI, the different methods based on the
cluster ansatz [27, 28] or the nonorthogonal CI approach
[33, 34]. These approaches attempt to include all the
important electron correlation effects in the total energy
of each electronic state. An alternative approach consists
not in improving the total energy of the individual states
but instead of improving the energy difference by in-
cluding the relevant terms only. Based on a theorem
proven by Malrieu [35], de Loth et al. [36] were able to
provide a complete analysis of the mechanisms con-
tributing up to second order to the energy differences
relevant to magnetic coupling. These physical mecha-
nisms can be written in terms of second-order diagrams
and one can include dynamical correlation to the mag-
netic coupling constant just by adding the contribution
of these second-order diagrams. The practical applica-
tions of this idea [36, 37] were not entirely satisfactory;
the values of J calculated following this strategy largely
improved those arising from the Anderson model but
were still rather far from experimental values and, in
some case, faced the typical problems of perturbation
theory with absurd results due to small denominators.
A major step towards a quantitative description of
the magnetic coupling was achieved by Miralles and
coworkers [38, 39], who realised that the problems
arising in perturbation theory can be overcome by a
variational treatment of the second-order diagrams
contributing to the energy differences. This variational
treatment led to the difference dedicated CI (DDCI)
method, that makes use of a CI expansion not aimed at
improving the energy of the individual states but at
improving their energy difference. In principle, in mag-
netic problems it would be enough to include in the
DDCI wave function the determinants with at most two
degrees of freedom [39], i.e one hole and a particle out of
the active space, two holes out of the active space or two
particles out of the active space, and the resulting
method is referred to as DDCI2 (Fig. 3). The DDCI2
approach has been successfully applied to problems
concerning biradicals [40-42], dinuclear complexes [43—
45] and ionic solids [19-21, 30, 46—52]. In most cases the
agreement with experiment is excellent, although results
for the magnetic coupling in ionic solids are not com-
pletely satisfactory, the calculated J values are usually
about 60-70% of experimental values. In these systems
quantitative agreement can be achieved by using the
DDCI3 formalism, which extends the DDCI2 list by
adding to the DDCI2 one the configurations with at
most two holes and one particle or two particles and one
hole out of the active space (Fig. 3). The configurations
added in the DDCI3 list include the single excitations of
the ligand-to-metal charge-transfer excitations, already
present in DDCI2 but with too high an excitation en-
ergy. The values of the magnetic coupling constant
predicted with the extended list of DDCI3 configura-
tions are within the experimental error bars [53]; there-
fore, one may conclude that DDCI provides an efficient
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tool for the study of a very complex property. The only
limitation of DDCI is perhaps the very large computa-
tional requirements needed when the magnetic centres
have elevated spin moments (S > 1), for complexes with
many magnetic centres or when voluminous ligands are
present. In these cases DDCI cannot be carried out and
one is forced to use a more approximate method such as
those described in the next section.

4 The BS method and the DFT approach
to magnetic coupling

The calculation of a magnetic coupling constant neces-
sarily involves the computation of the energy of
high-spin and low-spin states; therefore, the single
determinant nature of the Kohn—Sham implementation
of DFT poses some additional problems because it does
not allow the use of pure spin eigenfunctions. The usual
way in which DFT treats open shell systems is through
the use of a spin-polarised, i.e. unrestricted, formalism in
which « and f spin orbitals are allowed to have different
spatial parts. The single determinant description of the
high-spin state is not a problem, except for the small spin
contamination inherent to the use of an unrestricted
formalism. However, in the case of a pure low-spin state
it is not possible to have a single Kohn—Sham determi-
nant and one is forced to use a BS approach in which the
open shell magnetic orbitals are localised in different
centres and the magnetic electrons have opposite spin, so
the final value of the z-component of total spin, S., takes
the lowest possible value; for homonuclear dimers this
leads to states with S, = 0.

It is important to note that the BS approach can be
used in any single determinant approach to magnetic
coupling. This includes the unrestricted Hartree—Fock
(UHF) and the primitive versions of DFT such as Xa
scattered wave methods. The first attempt to compute
singlet—triplet splittings through the Xa scattered wave
method was reported about 30 years ago by Bagus and
Bennett [54] and was extended by Ziegler et al. [55]. The
BS approach to magnetic coupling was suggested by
Noodleman and coworkers [56—-58], initially also in the
framework of Xa, and later Yamaguchi and coworkers
[59-61] made significant contributions in the application
of UHF to magnetic coupling. Since the BS approach
does not lead to a pure singlet wave function (or to a
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density derived from a singlet wave function) it is nec-
essary to relate the expectation value of the energy of the
BS solution to that of the pure singlet. For a system with
two magnetic centres with spins S; and S, it has been
shown that the energy of the BS state is a weighted av-
erage of the energies of the pure spin multiplets [57, 62]
and that J can be obtained through the equation

E(BS) — E(S + 53)
PAYRY) ’ )

which can be viewed as an effective recipe which allows
the computation of J directly from the self-consistent-
field (SCF) calculation of two single determinants.
Interestingly enough Eq. (4) can also be derived by
making use of projection operators on the UHF wave
function. The BS solution is strongly spin contaminated,
for the case of two unpaired electrons one has SZ> ~ 1.0
as one would expect for a 50% admixture of singlet and
triplet; consequently the BS energy lies halfway between
singlet and triplet. The same result can be obtained by
realising that the UHF wave function is an eigenfunction
of the z-component of the total spin operator and by
using the mapping between exact and Ising Hamiltoni-
ans. These results are obtained by assuming that the o
and f spin orbitals are orthonormal; however, explicit
consideration of the overlap between o« and f spin
orbitals does not change this important conclusion [63].
Now, it is interesting to consider the case of four
unpaired electrons in two magnetic sites, i.e. equivalent
to the case of two particles with spin 1 discussed in
Sect. 2, where, as expected, one usually gets (8%) ~ 2.0,
which is precisely the value expected for a pure triplet
state. This is not surprising because the triplet state and
the antiferromagnetic state are degenerate for the Ising
Hamiltonian. The mapping between exact and Ising
models is in full agreement with the result predicted from
Eq. (4) and with the expectation value for the total
square spin operator.

The problems discussed so far involve either two
radical centres or two magnetic transition-metal centres.
Situations where unpaired electrons are simultaneously
located at a transition metal and at a radical centre are
possible. The BS approach has also been recently applied
to these metal-radical systems and the results are usually
very good [64]. However, it has been found that when
the singlet state has an unusually large multireference
character the magnetic orbitals obtained by the BS

J:
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solution and by single-reference approaches are quite
similar and significantly different from the correct mul-
ticonfigurational SCF ones. The role of the form of the
magnetic orbitals has been somehow overlooked until
now; this point is discussed at length in Ref. [64] together
with the relationship between (5?) and the overlap be-
tween o and f§ orbitals in unrestricted treatments. Finally
we note that more general equations for the BS ap-
proach including mixed valence cases have been reported
by Ovchinnikov and Labanowski [65].

The values of the magnetic coupling constants ob-
tained from the BS approaches, either Xo or UHF, are
qualitatively correct mainly because of the lack of elec-
tronic correlation. Not surprisingly the values obtained
with the UHF BS approach are very close to those
obtained from the CASCI approach [50-52]. In the
framework of DFT electronic correlation effects can be
included by means of the exchange—correlation func-
tional. The performance of different exchange—correla-
tion functionals in the computation of magnetic
coupling in wide-gap insulators has been investigated
recently by Martin and Illas [66, 67]. These authors
found that the key point to improve the description of
the magnetic coupling lies in the choice of the exchange
functional and that the effect of the correlation func-
tional was minor. At first sight one may think that this
result is in contradiction with all the discussion in the
previous section; however, one must realise that the
meaning of exchange and electronic correlation terms is
different in ab initio wave function and density func-
tional formalisms [68]. In DFT, electronic correlation is
better viewed in terms of Coulomb and Fermi holes and,
therefore, it is not surprising that the exchange part of
the functional carries an important part of the electronic
correlation between parallel spins that in a wave func-
tion formalism is included through CI. Martin and Illas
[66, 67] found that local exchange strongly overestimates
the values of magnetic coupling, in agreement with the
well-known failure of the local density approximation
(LDA) to properly describe the electronic structure of
strongly correlated systems. In fact, LDA band structure
calculations, and even those going beyond LDA, such as
the generalized gradient corrected approximation
(GGA) usually result in metallic nonmagnetic ground-
state solutions or exhibit extremely small insulating gaps
[69]. Ad hoc corrections to the LDA [70, 71], such as the
self-interaction corrections or the inclusion of on-site
Coulomb repulsion [72-75], give more realistic results,
but their use is rather scarce. Martin and Illas [66, 67]
have shown that to reach almost quantitative agreement
with experiment it is necessary to use a mixture of about
50% GGA and 50% Hartree—Fock exchange. Reasons
have been given for using such hybrid approach but the
precise amount of mixing remains largely semiempirical
especially because results from the well-known hybrid
B3LYP [76, 77] exchange—correlation functional that
includes about 25% mixture of Hartree—Fock exchange
leads to reasonable values for the magnetic coupling
constant of organic biradicals and some dinuclear
complexes [32, 78-82].

Before closing this section it is important to point out
that, in the case of using a DFT formalism, not all

authors agree on the interpretation of the BS solution
given here. Since the Hohenberg and Kohn theorems do
not make any reference to spin properties it is possible to
claim that the lowest energy obtained for a Kohn—Sham
determinant with zero total z-component of the total
spin is a good approximation to the energy of the lowest
singlet state. Additional support for this claim comes
from Wang et al. [83], who state that spin contamination
in DFT calculations is rather small [83]. On the basis of
these arguments Ruiz and coworkers [84-87] suggested
that accurate values of the magnetic coupling constant
of dinuclear complexes can be obtained by using the
B3LYP exchange—correlation functional and by consid-
ering that the energy of the BS solution is that of the
lowest singlet. In spite of the impressive numerical re-
sults, there are many serious arguments against this
point of view that suggest that one may have the right
answer for the wrong reason. The first argument con-
cerns the expectation value of the square of the total spin
operator. For the cases with two unpaired electrons one
invariably gets ($%) ~ 1.0, while for those with four
unpaired electrons one gets (§%) ~2.0. The strong
spin contamination values strongly suggest that the BS
cannot adequately represent a singlet state. A second
argument against this point of view comes from the fact
that it will also violate the mapping procedure discussed
in Sect. 2 and will lead to the absurd consequence that
two equivalent BS approaches, such as UHF or DFT,
will have to use two different ways to compute the
magnetic coupling constant. By bringing this argument
to the limit one will get the absurd conclusion that the
antiferromagnetic state of a periodic system leads to the
energy of the pure singlet state. A very strong argument
against considering the BS as an effective singlet state
comes from the analysis of the Ising model reported in
Sect. 2 for the case of two particles with spin 1. In this
case, the antiferromagnetic state is degenerate with the
triplet state and, therefore, the energy difference between
the quintet and the BS (or triplet) state is 2J, while as-
suming that the BS has the energy of a singlet one gets
3J. Notice that in this case the |]AFM) state behaves as
pure triplet state, but will be considered as a singlet.
Finally, we must note that even in the hypothetical case
of accepting that the B3LYP values for the magnetic
coupling of dinuclear complexes thus computed are
accurate one would have quite inaccurate results for
biradicals because it has been shown that the amount
of Hartree—Fock exchange needed in these systems is
quite different from that required for transition-metal
complexes or solids [66, 67].

5 Concluding remarks

The various state-of-the-art computational approaches
to magnetic coupling in biradicals, dinuclear complexes
and wide-gap insulators have been critically reviewed.
The magnetic coupling in these systems has been shown
to be governed by the same physical mechanisms and,
hence, the same ab initio methods can be applied not only
to study the magnetic properties of these amazing
systems but also to achieve a quantitative description.



The most rigorous wave-function-based methods provide
an accurate description of magnetic coupling in all these
systems, although such approaches may be inaccessible
for medium-to-large systems. Density-functional-based
methods within the BS approach provide an alternative,
yet efficient, way; however, these methods have to be used
with caution because of the impossibility (within the one
determinant Kohn—Sham model system) of dealing with
pure spin states. The use of mapping procedures provides
a straightforward and consistent way to relate the BS
solution to the appropriate spin state. The neglect of
this procedure may lead to values in agreement with
experiment, but at the cost of serious contradictions.
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